779 research outputs found

    Precise measurement of CMB polarisation from Dome-C: the BRAIN and CLOVER experiments

    Get PDF
    SF2A-2004: Semaine de l'Astrophysique Francaise, meeting held in Paris, France, June 14-18, 2004.The characterisation of CMB polarisation is one of the next challenge in observationnal cosmology. This is especially true for the so-called B-modes that are at least 3 order of magnitude lower than CMB temperature fluctuations. A precise measurement of the angular power spectrum of these B-modes will give important constraints on inflation parameters. In this talk, I will describe two complementary experiments, BRAIN and CLOVER, dedicated to CMB polarisation measurement. These experiments are proposed to be installed in Dome-C, Antarctica, to take advantage of the extreme dryness of the atmosphere and to allow long integration time

    Control of a particular micro-macro positioning system applied to cell micromanipulation

    Full text link

    Cosmic Background dipole measurements with Planck-High Frequency Instrument

    Get PDF
    This paper discusses the Cosmic Background (CB) dipoles observations in the framework of the Planck mission. Dipoles observations can be used in three ways: (i) It gives a measurement of the peculiar velocity of our Galaxy which is an important observation in large scale structures formation model. (ii) Measuring the dipole can give unprecedent information on the monopole (that can be in some cases hard to obtain due to large foreground contaminations). (iii) The dipole can be an ideal absolute calibrator, easily detectable in cosmological experiments. Following the last two objectives, the main goal of the work presented here is twofold. First, we study the accuracy of the Planck-HFI calibration using the Cosmic Microwave Background (CMB) dipole measured by COBE as well as the Earth orbital motion dipole. We show that we can reach for HFI, a relative calibration between rings of about 1% and an absolute calibration better than 0.4% for the CMB channels (in the end, the absolute calibration will be limited by the uncertainties on the CMB temperature). We also show that Planck will be able to measure the CMB dipole direction at better than 1.7 arcmin and improve on the amplitude. Second, we investigate the detection of the Cosmic Far-Infrared Background (FIRB) dipole. Measuring this dipole could give a new and independent determination of the FIRB for which a direct determination is quite difficult due to Galactic dust emission contamination. We show that such a detection would require a Galactic dust emission removal at better than 1%, which will be very hard to achieve.Comment: 10 pages, 13 figures, submitted to A&A, uses aa.sty V5.

    Sensitivity of a Bolometric Interferometer to the CMB power spectrum

    Full text link
    Context. The search for B-mode polarization fluctuations in the Cosmic Microwave Background is one of the main challenges of modern cosmology. The expected level of the B-mode signal is very low and therefore requires the development of highly sensitive instruments with low systematic errors. An appealing possibility is bolometric interferometry. Aims. We compare in this article the sensitivity on the CMB angular power spectrum achieved with direct imaging, heterodyne and bolometric interferometry. Methods. Using a simple power spectrum estimator, we calculate its variance leading to the counterpart for bolometric interferometry of the well known Knox formula for direct imaging. Results. We find that bolometric interferometry is less sensitive than direct imaging. However, as expected, it is finally more sensitive than heterodyne interferometry due to the low noise of the bolometers. It therefore appears as an alternative to direct imagers with different and possibly lower systematic errors, mainly due to the absence of an optical setup in front of the horns.Comment: 5 pages, 3 figures. This last version matches the published version (Astronomy and Astrophysics 491 3 (2008) 923-927). Sensitivity of Heterodyne Interferometers modified by a factor of tw

    Analysis of multiple cracking in metal/ceramic composites with lamellar microstructure

    Get PDF
    Financial support of this research by The Royal Society, UK (IE121116), The Carnegie Trust for the Universities of Scotland, UK (Trust Reference 31747) and DFG (PI 785/3-2, PI 785/1-2), Germany, is gratefully acknowledged. We thank Dr. S. Roy (KIT) for providing the microstructure images and Professor I. Tsukrov (University of New Hampshire, USA) for helpful discussions.Peer reviewedPostprin

    Nondissipative Addressing for Time-Division SQUID Multiplexing

    Get PDF
    International audienceRecent and future astronomical instruments are based on a focal plane mapped by a large array of superconducting bolometers. Cryogenic analog multiplexing readout techniques, based on superconducting quantum interference devices (SQUIDs), are currently developed to achieve the readout of large arrays of this kind of low noise background-limited detectors. To effectively reduce the number of cryogenic wires (particularly, SQUID biasing), line/column addressing is currently used in time-division multiplexing, i.e., same biasing is applied to a few SQUIDs (on a line) of different columns. This technique should dramatically increase power consumption if parallel biasing is applied via resistors to isolate each column; the power budget is particularly limited on this kind of front-end cryogenic readout. A design with one transformer per SQUID is also used to read out SQUID biased in series with no excess of consumption and crosstalk. We propose here a new biasing technique using simple surface-mounted capacitors, which is easier to implement. These capacitors are used to parallel bias SQUIDs without additional Joule effect while minimizing crosstalk. However, capacitors do not allow dc biasing and need a current mean value equal to zero to avoid biasing source saturation. We have then tested square current biasing through capacitors on a commercial SQUID. This measurement shows that capacitors are able to proper bias SQUID and then to perform a nondissipative addressing for time-division SQUID multiplexing

    About the connection between the CℓC_{\ell} power spectrum of the Cosmic Microwave Background and the Γm\Gamma_{m} Fourier spectrum of rings on the sky

    Full text link
    In this article we present and study a scaling law of the mΓmm\Gamma_m CMB Fourier spectrum on rings which allows us (i) to combine spectra corresponding to different colatitude angles (e.g. several detectors at the focal plane of a telescope), and (ii) to recover the ClC_l power spectrum once the Γm\Gamma_m coefficients have been measured. This recovery is performed numerically below the 1% level for colatitudes Θ>80∘\Theta> 80^\circ degrees. In addition, taking advantage of the smoothness of the ClC_l and of the Γm\Gamma_m, we provide analytical expressions which allow to recover one of the spectrum at the 1% level, the other one being known.Comment: 8 pages, 8 figure
    • 

    corecore